Peak Oil is You

Donate Bitcoins ;-) or Paypal :-)

Page added on August 21, 2016

Bookmark and Share

Alice Friedemann: overview of peak oil, coal, and natural gas



Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”]

Peak Oil

Of all the resources in the world, oil is top dog.  All other resources depend on oil.  You can get every fish in the sea, drain every drop out of non-renewable aquifers, make enough concrete to pave the planet, and convert every square mile of land to grow crops and feed barnyard animals cutting down the remaining forests.  Which we are well on our way to doing.  But only oil can do it, because the heavy-duty diesel engines that do the essential work of civilization run on diesel fuel.  Locomotives, ships and trucks (i.e. logging, mining, construction, long-haul, garbage, cranes, fork-lifts, tractors, harvesters) all burn oil.

Peak oil doesn’t mean “running out of oil”, it happens when global oil production inevitably declines which will clearly happen some day since oil is finite.  Since the 1960s the world has been consuming more oil than has been discovered.  Most of the world’s 500 largest oil fields were discovered over fifty years ago, and are still the source of 60 % of our oil.

Decline could start sooner than most people think.  Conventional oil peaked in 2005, and provides 90% of our oil supplies.  Oil fields past their peak are declining on average 6% a year. But every year that increases slightly, so by 2030 they may be declining at 9% or more a year. This means that by 2030 half to two-thirds of our oil will need to be replaced.  I don’t see how unconventional oil can make up the difference. Even if a crash program to ramp up tar sands production occurred, peak would be reached about 2040 at a quarter of what America consumes today.   Arctic oil, if we ever figure out how to get it, will take decades of development before a single drop is produced.  And tight fracked oil is expected to peak by 2020 after which it will decline rapidly.

Ever since oil prices dropped, people have forgotten and even denied peak oil.  But perhaps they’d think differently if they’d heard former Secretary of Defense James at a senate hearing in 2006 where he said that “By about 2010, we should see a significant increase in oil production as a result of investment activity now under way. There is a danger that any easing of the price of crude oil will, once again, dispel the recognition that there is a finite limit to conventional oil.

There can be no transition to alternative energy without oil because that’s what heavy-duty transportation runs on.   Wind turbines depend on the delivery of 8,000 parts from dozens of countries and trucks to dig a giant hole and fill it with 1300 tons of concrete for a platform to put the turbine on after it’s delivered.

Oil shocks can happen any time there’s a financial crash, exporters keep their oil for their own growing populations, war or terrorists destroy refineries, oil tankers, or block chokepoints.


Peak Coal

There are scientists who believe coal has already peaked globally or will soon. Estimates of global peak production range from 2015 to 2034, and U.S. peak from 2002 to 2015.

Tad Patzek, at the University of Texas, thinks that energy-wise, coal peaked in 2011, since we mined the higher energy coal first. Patzek thinks the remaining coal will provide only half the energy by 2050 that it does today.

The United States is often said to have 250 years of coal reserves.  But that estimate was made in 1974 when the USGS last did a survey.  A national academy of sciences report in 2007 said they thought the number might be closer to 100 years and recommended the USGS do another survey.

New development since “when trucks stop running”: Last year the USGS reassessed America’s most important reserve, the Powder River Basin in Wyoming and Montana, where 42% of our coal is produced.  The USGS found that at most, 40 years of reserves were left.  Not 250 years.  This is coal that keeps the lights on in much of America. But the only major news media that reported this were U.S. News and World Report and the Pittsburgh post gazette.

Clearly other coal reserves need to be re-evaluated again too.  It’s a good bet the reserves in Illinois will go down, since even though coal production is half of what it was 20 years ago, it’s still credited with reserves nearly the size of Montana.

Liquefied coal, also known as CTL, is seen as a way to cope with diesel shortages in the future, since we know this can be done because Sasol has been making CTL for 50 years in South Africa.

Coal is also one of the few substances that might scale up to replace oil, though whether it would be worth doing depends on a more realistic assessment of our reserves.  Some geologists estimate America has as little as 60 years of coal left.  If that’s correct and it was all converted CTL, then it would only last 30 years, since half the energy of coal is needed to make CTL. With Carbon Capture and Storage, another 40% of the energy would be used.

CTL has other limits too.  Each ton of liquid coal requires 6 to 15 tons of water, so very little if any could be produced in dry states like Wyoming and Montana where there simply isn’t enough water.

Peak Natural Gas

It’s hard to predict world peak natural gas, because there are huge amounts still.  But many of these gas reservoirs are stranded because it would cost too much to build pipelines to get it to markets, and 20 to 40% is too expensive to process since they contain corrosive “sour” gas with toxic hydrogen sulfide or carbon dioxide.

The Energy Information Administration estimates 57 years of global natural gas are left at current consumption rates.  If we increased consumption by 7% a year, it would last 28.5 years, half as long.

Natural gas is not traded like oil world-wide because  Liquefied natural gas import terminals cost billions and each LNG carrier $2 to 3 hundred million dollars.  But in 2004, the U.S. was trying to build dozens after prices sky-rocketed and shortages loomed.

Conventional gas production peaked in 1973 and is declining at a rate of 5% a year.  Fortunately, in 2005 fracked natural gas came to the rescue by yet another Wall Street scam that fleeced the middle class again like the mortgage bubble.  Millions of Americans who invested in high-yield bond and stock funds were unwittingly lending money to shale companies that were losing money, who kept on drilling as long as Wall Street kept lending them money.  Now shale companies are over $300 billion in debt and many have gone bankrupt.  Even without the shale bubble popping, but both fracked natural gas and oil would have geologically peaked by 2020.

In order to keep trucks running our congressional leaders had hoped that by now 20% of trucks would be using compressed or liquefied natural gas to take advantage of what they’ve been told is 100 to 250 years of fracked natural gas and American Energy Independence.

But only 3.5% of trucks run on natural gas, mainly private fleets of delivery trucks and buses.

Truckers haven’t bought into natural gas because they have to refuel 2 to 4 times more often, natural gas trucks cost 50 to 100 thousand dollars more than diesel trucks, and any price advantage natural gas has is undercut by continual efficiency improvements in diesel engines.

There are very few trucks burning Liquefied natural gas, but not many since there are only 73 public LNG stations in the U.S., mainly in California.

Railroads don’t want to have to build a completely new gas distribution system and replace their 25,000 $2 million locomotives plus add a giant tank car of natural gas fuel that might explode in a derailment.

References for Peak Oil

  • Aleklett, K., et al. 2012. Peeking at peak oil. Berlin: Springer.
  • Brandt A.R., et al. 2013. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010. Energy.
  • Brown, J.J. June 10, 2013. Commentary: is it only a question of when the US once again becomes a net oil exporter?
  • 2010. Armed forces, capabilities and technologies in the 21st century environmental dimensions of security. Peak oil. Bundeswehr transformation centre, future analysis branch.
  • 2015. Canadian crude oil production forecast 2014–2030. Canadian Association of Petroleum Producers.
  • Cleveland, C. J., et al. 2010. An assessment of the EROI of oil shale. Boston University.
  • Davies, P. et al. 2000. Oil resources: a balanced assessment. Journal of the Center for Energy Petroleum & Mineral Law & Policy 6:15.
  • DOE/EIA. 2015. Annual energy outlook 2015 with projections to 2040.
  • 2007. Crude oil. Uncertainty about future oil supply makes it important to develop a strategy for addressing a peak and Decline in Oil Production. U.S. Government Accountability Office.
  • Hallock, J. L., Jr, et al. 2014. Forecasting the limits to the availability and diversity of global conventional oil supply: validation. Energy 64:130–153.
  • Hamilton, J.D. 2013. Historical Oil Shocks in Routledge handbook of major events of economic history. Routledge.
  • Hirsch, R. L., et al. 2005. Peaking of world oil production: impacts, mitigation, & risk management. Department of energy.
  • Hirsch, R.L., 2008. Mitigation of maximum world oil production: shortage scenarios. Energy Policy 36(2):881–889.
  • Hook, M., et al. 2009. Giant oil field decline rates and their influence on world oil production. Energy Policy 37(6):2262–2272.
  • House 112-176. 2012. The American energy initiative part 28: a focus on the outlook for achieving North American energy independence within the decade. U.S. House of Representatives hearing.
  • House 112-4. 2011. The effects of Middle East events on U.S. energy markets. U.S. House of Representatives hearing.
  • House 113-1. 2013. American energy security & innovation: an assessment of North America’s energy resources. U.S. House of Representatives hearing.
  • House 113-2. 2013. American energy outlook: technology market and policy drivers. U.S. House of Representatives hearing.
  • Hughes, J. D. 2014. Drilling deeper. Post carbon institute.
  • 2008. World energy outlook 2008, 45. International Energy Agency.
  • 2010. World energy outlook 2010, 116. International Energy Agency.
  • 2013. World energy outlook 2013 executive summary. International Energy Agency.
  • Kerr, R. 2011. Peak oil production may already be here. Science 331:1510–11.
  • Macalister, T. 2009. Key oil figures were distorted by US pressure, says whistleblower. The Guardian.
  • Murphy, D.J., et al. 2011. Energy return on investment, peak oil, and the end of economic growth. Annals of the New York Academy of Sciences 1219: 52–72.
  • Murray, J., et al. 2012. Oil’s tipping point has passed. Nature 481:43–4.
  • 2013. Canada’s energy future, energy supply and demand to 2035. Government of Canada National Energy Board.
  • Newby, J. 2011. Oil Crunch (Fatih Birol). Catalyst. ABC TV.
  • 2015. Arctic potential: realizing the promise of U.S. arctic oil and gas resources. National Petroleum Council.
  • 2006. Trends in oil supply and demand. Potential for peaking of conventional oil production and mitigation options. National Research Council.
  • Patzek, T. 2012. Oil in the Arctic. LifeItself blog.
  • Pearce, F. 2012. The land grabbers: the new fight over who owns the earth. Beacon Press.
  • Sahagun, L. May 21, 2014. U.S. officials cut recoverable Monterey Shale oil by 96 %. Los Angeles Times.
  • Senate 109-412. 2006. Energy independence. U.S. Senate hearing.
  • Soderbergh, B., et al. 2007. A crash programme scenario for the Canadian oil sands industry. Energy Policy 35.
  • Udall, R. 2005. The illusive bonanza: oil shale in Colorado “pulling the sword from the stone”. ASPO-USA.
  • Waldman, J. 2015. Rust. The longest war. Simon & Schuster.
  • Zittel, W, et al. 2013. Fossil and nuclear fuels. Energy Watch Group.

References for Peak Coal

  • Croft G.D., and T.W. Patzek. 2009. Potential for coal-to-liquids conversion in the U.S.—resource base. Natural Resources Research.
  • 2015. Table 6.2 Coal Consumption by sector. Washington, DC: Energy Information Admin.
  • 2013. Fossil and nuclear fuels—the supply outlook. Energy Watch Group.
  • Heinberg, R., and D. Fridley. 2010. The end of cheap coal. Nature 468:367–369.
  • Höök, M., et al. 2009. Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology 78(3):201–216.
  • Höök, M., et al. 2010a. Global coal production outlooks based on a logistic model. Fuel 89: 3546–3558.
  • Höök, M. 2010. Trends in U.S. recoverable coal supply estimates and future production outlooks (Gompertz curve p. 20). Natural Resources Research 19(3): 189–208.
  • Höök, M., et al. 2010b. A review on coal-to-liquid fuels and its coal consumption (Fig. 3). International Journal of Energy Research 34: 848–864.
  • Höök, M., et al. 2010c. Validity of the fossil fuel production outlooks in the IPCC emission scenarios. Natural Resources Research 19(2): 63–81.
  • Höök, M., et al. 2014. Hydrocarbon liquefaction: viability as a peak oil mitigation strategy. Philosophical Transactions. Series A: Mathematical, Physical, and Engineering Science 372.
  • Kong, Z., et al. 2015. EROI analysis for direct coal liquefaction without and with CCS: The case of the Shenhua DCL Project in China. Energies 8(2): 786–807.
  • Luppens, J.A., et al., 2008. Assessment of coal geology, resources, and reserves in the Gillette coalfield, Powder River basin, Wyoming. U.S. Geological Survey Open-File Report.
  • Luppens, J.A., et al. 2009. Coal resource availability, recoverability, and economic evaluations in the U.S. A summary. U.S. Geological Survey.
  • Mohr, S.H., et al. 2009. Forecasting coal production until 2100. Fuel 88: 2059–2067.
  • 2007. Hydrocarbon liquids, Chap. 11. Hard truths: Facing the hard truths about energy. National Petroleum Council.
  • 2007. Coal. Research and development to support national energy policy. Washington (DC): National Academies Press.
  • 2009. Liquid transportation fuels from coal and biomass: Technological status, costs, and environmental impacts. Washington (DC): National Academies Press.
  • Patzek, T.W. et al. 2009. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis. Natural Resources Research 18(3).
  • Patzek, T., et al. 2010. A global coal production forecast with multi-Hubbert cycle analysis. Energy 35: 3109–3122.
  • Reaver, G.F., et al. 2014. Imminence of peak in US coal production and overestimation of reserves. International Journal of Coal Geology 131: 90–105.
  • Rutledge, D. 2011. Estimating long-term world coal production with logit and probit transforms. International Journal of Coal Geology 85: 23–33.
  • 2007. Crude oil. Uncertainty about future oil supply makes it important to develop a strategy for addressing a peak and decline in oil production. United States Government Accountability Office.



References for Natural Gas


  • Berman, A., et al. 2015. Years not decades: proven reserves and the shale revolution. Houston: Houston Geological Society.
  • Coyne, D. 2015. World natural gas shock model., July 28.
  • DOE/EIA. 2015. Annual energy outlook with projections to 2040. U.S. Energy Information Administration.
  • Heinberg, R. 2013. Snake Oil: How fracking’s false promise of plenty imperils our future. California: Post Carbon.
  • House 113-1. 2013. American energy security and innovation: An assessment of North America’s energy resources. U.S. House of Representatives Hearing.
  • Hughes, J. David. 2014. Drilling Deeper. A reality check on U.S. government forecasts for a lasting tight oil & Shale gas boom. Part 1: Executive Summary. California: Post Carbon Institute.
  • 2009. Second IMO GHG Study. International Maritime Organization.
  • Inman, M. 2014. Natural gas: The fracking fallacy. Nature 516: 28–30.
  • Krauss, C. 2012. After the Boom in natural gas. New York Times, October 20.
  • Loder, A. 2015a. Shale drillers feast on junk debt to stay on treadmill. Bloomberg, April 30.
  • Loder, A. 2015b. The Shale industry could be swallowed by its own debt., June 18.
  • 2015. Review of the 21st century truck partnership, 3rd report. Washington, DC: National Academies Press.
  • Powers, B. 2013. Cold, hungry and in the dark: Exploding the natural gas supply myth. Gabriola: New Society Publishers.
  • Senate 109-412. 2006. Energy independence. U.S. Senate Hearing, March 7.
  • Senate 113-1. 2013. Natural gas resources. U.S. Senate Hearing, February 12.
  • Senate 113-355. 2014. Crude oil exports. U.S. Senate Hearing, January 30.
  • TIAX LLC. 2010. Demonstration of a Liquid Natural Gas Fueled Switcher Locomotive at Pacific Harbor Line, Inc, prepared for the Port of Long Beach.
  • Tinker, S.W. 2014. Role of shale gas in North American and global power markets. Slide 45 Forecast vs. Actual. University of Texas, Bureau of Economic Geology.
  • Urbina, I. 2011. Insiders sound an alarm amid a natural gas rush. New York Times, June 25.
  • S. Census. 2000. Annual projections of the total resident population as of July 1: Middle, lowest, highest, and zero international migration series, 1999–2100.
  • Yergin, D., et al. 2003. The next prize. Foreign Affairs, Council on Foreign Relations.

20 Comments on "Alice Friedemann: overview of peak oil, coal, and natural gas"

  1. paulo1 on Sun, 21st Aug 2016 9:04 am 

    Good article. Well cited with respectable references. Now is the time to que the f>>ktard comments from some of our more agenda-driven commentators.

  2. Cloggie on Sun, 21st Aug 2016 9:11 am 

    Old school Heinbergian peak oil story, still stuck in ASPO-2000 data and grudgingly accepting the reality of fracking. Technology does not exist as a dynamic factor, providing a ladder to get acces to higher hanging fruit as well create possibilities for energy saving.

    “There can be no transition to alternative energy without oil because that’s what heavy-duty transportation runs on. Wind turbines depend on the delivery of 8,000 parts from dozens of countries and trucks to dig a giant hole and fill it with 1300 tons of concrete for a platform to put the turbine on after it’s delivered.”

    This is assumes that society will not be able to prioritize between using oil for the public or oil for setting up a new energy base.

    There will always be fossil fuel for these priority activities.

    Steady implementation of renewable energy sources further eat away from fossil fuel consumption.

  3. dave thompson on Sun, 21st Aug 2016 1:40 pm 

    Great thorough, concise, to the point, there is NOTHING, that will replace the power of liquid transport fuels. No gasoline, diesel, jet fuel, heavy bunker fuels for ships, no civilization, end of story, have a nice day.

  4. shortonoil on Sun, 21st Aug 2016 1:42 pm 

    “Good article. Well cited with respectable references. “

    Yes a good article, but the author is still concentrating on the mass bases of reserves, and not on their energy bases. The two are not equivalent. Energy is the purpose of extracting fossil fuels to begin with; quoting the quantity available using another property makes no sense. It is like stating that there are a lot of barrels in lake Erie, or a lot of gold in the oceans. Neither are of any value.

    Most authors either do not understand energy dynamics, or are attempting to simplify them for the benefit of their readers. The world is in an energy crisis, and the world’s economies are chugging to a halt because of it. Central Banks are attempting to paper over it by printing $trillions of what they call liquidity; which is nothing more than a euphemism for more currency and less goods and services to back it up.

    The agenda-divers have fertile ground to sow their message that all is well, while their employers continue to strip what remains of the world’s wealth. Blissful ignorance can be very nice until you have become very, very hungry. Unfortunately, when that day arrives there will be very few options remaining for today’s blissfully happy ignoramuses!

  5. Apneaman on Sun, 21st Aug 2016 2:10 pm 

    Speaking of thermodynamics…..

    A Thermodynamic Critique

  6. Boat on Sun, 21st Aug 2016 3:24 pm 


    You ignore the fact the last 1 mbpd of new oil over the last year primary is from the middle east. These countries all plan to increase production. New demand is still chugging along at over 1 mbpd. Nothing has changed much from 2015. There is still a glut. Your etp dribble is drowning in a sea of oil.

  7. shortonoil on Sun, 21st Aug 2016 4:03 pm 

    Excellent article Ape, thanks.

    Plus, an understanding of evolutionary psychology is a must to appreciate human behavior. We are hard wired to make most of the decisions that we do. That is why technological advancements seldom solve problems. They are motivated by the same instincts that produced the problems to begin with. When all is said, and done you have is a bigger problem than what you began with.

    From gun powder to nuclear weapons is a good example of humans digging themselves into an ever deeper hole.

  8. shortonoil on Sun, 21st Aug 2016 4:17 pm 

    “There is still a glut. Your etp dribble is drowning in a sea of oil.”

    Your ever persistent bullshit is amazing! We stated almost three years ago that the world would never again be able to absorb all the petroleum produced. That is what would drive down prices until petroleum producers could no longer make money producing oil. It is what brings about the end of the oil age. Here is the graph:

    Have it stenciled on the inside of your eye lid, so that I don’t have to put it up every day for next 13 years for you.

  9. Harquebus on Sun, 21st Aug 2016 5:58 pm 

    13 years is a bit optimistic.

  10. shortonoil on Sun, 21st Aug 2016 6:53 pm 

    13 years is the theoretical arrival of the “dead state” for the average barrel of oil. There is also good theoretical and subjective estimates that state that it won’t last that long. That the petroleum industry will collapse. When you look at their debt load, and revenue stream ($2.5 trillion, to $1.7 trillion) they could be right. We are assuming that the world will throw everything, including the kitchen sink, into keeping the oil flowing. If they do it will cost $39 trillion over the next decade. —“Your tax payer dollars at work”—

  11. Truth Has A Liberal Bias on Sun, 21st Aug 2016 8:44 pm 

    ETP model is the most retarded fucking bullshit I’ve ever heard of. Short should publish in a peer reviewed journal or shut the fuck up once and for all.

  12. onlooker on Sun, 21st Aug 2016 9:59 pm 

    What is retarded truth about taking into account the properties of the resource in question, laws of physics and production history to determine for how much longer this resource will be useful to society? Seems like you refuse to acknowledge facts of the matter

  13. freak on Sun, 21st Aug 2016 11:26 pm 

    Alice Friedemann and Chris Martenson’s 08/21/16 Podcast.

  14. freak on Mon, 22nd Aug 2016 3:01 am 

    I seem to think we need to look at what is happening to the global currency monetary system in the world to really get a clear understanding of the things coming that will effect all of us.

  15. shortonoil on Mon, 22nd Aug 2016 7:46 am 

    “ETP model is the most retarded fucking bullshit I’ve ever heard of. Short should publish in a peer reviewed journal or shut the fuck up once and for all. “

    Your don’t keep up very well, do you?

    I’ve posted this here, on the main page, and in the Etp Model thread.

    The Hill’s Group, in collaboration with Dr. Louis Arnoux of nGeni™ , and Dr. Alistor Hamilton of the Dept of Mechanical Engineering, Edinburgh are preparing two papers. One by invitation in Dr. Charles Hall’s the “Journal of Physics and Quality Resources” and one for the Royal Academy of Sciences.

    The papers will be intended for academics, and knowledgeable readers of the general public.

    Which, obviously, leaves you out. Sorry.
    But, we do hope that you continue to enjoy your comic books, and tabloids. We also hope that you continue to post your irrelevant, uninformed crap on PO News for the amusement of its readers.

  16. marmico on Mon, 22nd Aug 2016 8:33 am 

    Well, the Turdburg and I agree on only one issue. The ETP is garbage. No doubt she will be on the review committee to smack that quack Arnoux around. There will be so many revisions required that the maximum price curve will become an irrelevancy. I can hardly wait to see the gymnastics needed to empirically prove that refineries are only 65% energy efficient.

    Bedford Hill is a fucking goof. In 1960, he posits that the maximum price curve pencils out at 15% of world GDP and in 2020 it is purported to be less than 1% of GDP. Pure and plain nonsense.

  17. shortonoil on Mon, 22nd Aug 2016 9:28 am 

    ” I seem to think we need to look at what is happening to the global currency monetary system in the world to really get a clear understanding of the things coming that will effect all of us.”

    We have stated on several occasions that the depletion of the world’s petroleum reserves would be reflected in the activity of the FX markets. But, because economics is a synthetic system that can be, and is manipulated by the Central Banks, and other large participates it is at best a general outline of the activity that is occurring. Economic models, unlike physical models that have unassailable boundary conditions, can and often do project situations that in the real world would be impossible to achieve. Their lack of built in restraints make them a potentially very dangerous tool in the hands of those with an agenda!

  18. Davy on Mon, 22nd Aug 2016 9:52 am 

    Short’s ETP model has had profound and conformational support for my collapse narrative. While I agree that it can be discounted as any model can, it has a firm foundation in a reality that seeks to be grounded in natural and scientific law. It further follows common sense if one looks at the rather normal ideas of depletion and the human nature of seeking the low hanging fruit of exploitation. Ideas expressed by this model are sound as are the conclusions. The model is also proving to be accurate in relation to what is actually happening with price at lease more accurate than other predictions. Where the model will likely cease to be very effective is when the turbulence and deflation of a decaying global system becomes pronounced enough to make any models of what is happening ineffective. There is now formula for turbulence.

    Marmico on the other hand has contributed little if anything to our discussion. Anyone can reference a Freddie fluff chart. Anyone can speak with profanities and mal-intent. Marmico is an example of the lowest of scum that inhabit the World Wide Web. He is a disgrace to our board. I do not mind his contrary positions in fact I welcome them. The last thing I want to do or be is absolutely sure of what I am talking about especially considering the gravity of what we talk about here. So Marmico go bite yourself and give yourself rabies.

  19. marmico on Tue, 23rd Aug 2016 6:16 am 

    Short’s ETP model has had profound and conformational support for my collapse narrative

    Ya, carry on with your indigestible word salad bull shit, Davy Greenacres.

    Global oil consumption expenditures have ranged from 2% to 6% of global income for the last 50 years. In 2016, ~2.5%. But some goof (who only 4 years ago was predicting $407/barrel in 2020) says that the maximum expenditure/income ratio was 15% in 1960 and <1% in 2020. Ya, right, you fucking retard.

  20. Davy on Tue, 23rd Aug 2016 7:27 am 

    Marmico, did you read the other part of my comment about rabies?

Leave a Reply

Your email address will not be published. Required fields are marked *